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SUMMARY 
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in 
a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, 
cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional 
equations governing compressible flow of a gas. The resulting scheme requires an average of the flow 
variables across the interface between cells and for computational efficiency this average is chosen to be 
the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. 
The scheme is applied with success to  five problems with either slab or cylindrical symmetry and a 
comparison is made in the cylindrical case with results from a two-dimensional problem with no sources. 
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1. INTRODUCTION 

The approximate Riemann solver of Roe’ has proved successful in its application to a number 
of problems in unsteady gas dynamics. Other Riemann solvers developed along different lines 
have also been equally successful in this area of CFD (see e.g. Reference 2). The pioneering work 
of Roe has also been extended in other areas such as MHD, but some of the original conditions 
for constructing the Jacobian matrix have to be abandoned sometimes (see e.g. Reference 3). 

Recently4 an approximate Riemann solver of the Roe type was developed for the shallow 
water equations which used the arithmetic mean for the average of the flow variables across a 
cell interface. The purpose of this paper is to present a similar type of Riemann solver for the 
Euler equations for a duct of variable cross-section and using the arithmetic mean for 
computational efficiency. This is in contrast to the usual ‘square root’ averaging of Roe’s 
Riemann solver. As well as the usual case of slab symmetry, this includes flows with cylindrical 
or spherical symmetry. The scheme is applied to five problems with interacting and/or reflecting 
shocks in slab or cylindrical geometry. The arithmetic mean has also been used for the steady 
Euler equation scheme of Dicks where the equations and underlying Jacobian structure are 
different from those of this paper. 

2. EQUATIONS OF FLOW 

The ‘one-dimensional’ equations governing compressible Bow of a gas can be written as 
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where the total energy 

The quantities p, u, p and y represent density, velocity, pressure and the ratio of specific heat 
capacities of the fluid respectively. Equations (la-d) represent a system of hyperbolic equations 
for (p,  pu, e) = (p,  pu, e)(r, t ) ,  where pu is the momentum at a general position r along the duct 
(of cross-sectional area S(r)) at time t .  The particular example S(r) = rN represents slab symmetry 
( N  = 0), cylindrical symmetry ( N  = 1) or spherical symmetry ( N  = 2). (N.B. The co-ordinate r 
is given by r = x, J(x’ + y 2 )  and J(x2 + y 2  + 2’) in the case of central symmetry with N = 0, 
1 and 2 respectively, where x, y and z represent Cartesian co-ordinates.) 

In the next section we find approximate solutions of equations (la-d), but first we rewrite 
them in standard ‘conservation form’ as 

W, + (F(w))r = f(w), (24  

( 2 b 4  

( 2 4  

where 

w = (P, PU, e)T, F(w) = (pu, P + pu2, u(e + pNT, 

together with (Id), and 

f(w) = - S ‘ ( r ) / W ( p K  pu2, u(e + P))’ 

is a source term arising from the geometry. The special case S(r)  = constant is considered first 
and the extension to the general case is developed from the special case. 

3. APPROXIMATE RIEMANN SOLVER 

We consider the approximate solution wj” 2: w(rj, t ,) to consist of a set of piecewise constants 
and solve approximately the associated Riemann problems at the interface separating adjacent 
states. An approximate Jacobian needs to be constructed across an interface so that shock 
capturing is automatic, and this represents an average of the Jacobian matrix evaluated either 
side of the interface. 

Consider firstly equations (2a) with S(r)  = constant. The Jacobian matrix of the flux function 
F(w) is given by 

/ 0 1 o \  

A =  (3 - Y)U 

a’ 
u2 + - 

2 Y-1 

3 - 2y 
(3) 
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Consider two adjacent states wL and wR (left and right) given at either end of the cell (rL, rR) 
and consider also the algebraic problem of finding an approximate Jacobian A = A(w,, wR) in 
this cell such that 

AAw = AF, (4) 

where A(.) = (.)R - ( . ) L ,  w = (p,  pu, e)T and F = (pu, p + puz, u(e + P) )~ .  A solution to this 
problem for arbitrary jumps Aw can be used to obtain a conservative scheme with good 
shock-capturing properties. Although the matrix A is not unique, it is possible to determine a 
matrix which results in an efficient algorithm. This is achieved by writing Aw and AF in terms 
of Au, where u = (p,  u, p)’, and using identities such as A(pu) = FAu + iiAp, A(puz) = Z A p  + 
2pUAu and A(up) = iiAp + pAu, where the overbar denotes the arithmetic mean of left and right 
states. The matrix A” which results is 

/ 0 1 

where 

and this matrix satisfies (4). 

eigenvectors Ei of A and it is a simple matter to show that these are given by 
Now the important quantities that are needed for the scheme are the eigenvalues xi and 

- 
A l , z , 3  = ii f ii, u (9 a-c) 

where 

ii = [z + $ A u ) ~ ] ~ ’ ~ .  

Finally it is necessary to project a general jump Aw on to the eigenvectors Ei as 

3 
AW = 1 EiEi. 

i =  1 

By virtue of equation (4) we then have 

3 

AF = 1 XiEiGi. 
i =  1 
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Solving equation (12) gives 
F - Ap f piiAu + ~ ( A U ) ~ A ~  a2 AP 

23 = - A p  - -. 3 21i2 ii2 ii2 u1.2 = 

Thus equations (2a) with S(r) = constant can be approximated by 
wn+ 1 p -w: AF 

+-=0,  
At  Ar 

which can thus be written as 

fp+' p - w! + &diei 
~- - 0, 

At i = l  Ar 

( 14a-c) 

where Ar and At represent the mesh spacing in the r- and t-directions respectively and the point 
P may be L or R. Upwind differencing now applied to equation (16) gives the following first-order 
algorithm for the solution of equations (2a) with S(r) E constant: 

add - 
At  - 

~ AiEiGi to wR when xi > 0 or 
Ar 

add - 
At - - 
- AiEiCi  to wL when ,Ii < 0. 
Ar 

The only quantities required for the algorithm are given by equations (6a) and (1 l), so that only 
one square root is taken in each computational cell. The first-order algorithm can be extended 
to second-order accuracy using flux limiters6 and can be modified to be entropy-satisfying by 
employing the scalar algorithm in Reference 7. For a discussion on overcoming the problem of 
flows near a vacuum the reader is referred to the work of Einfeldt.' 

Finally, in the case of a duct of variable cross-section or for cylindrically or spherically 
symmetric flows, there is a source term present, f = -S'(r) /S(r)  (pu, pu2, u(e + P ) ) ~ .  Upwinding 
the source term as described in Reference 4 enables equations (2a) to be solved approximately 
using appropriately modified wave strengths iii. 

4. TEST PROBLEMS AND NUMERICAL RESULTS 

We describe five test problems and give the numerical results obtained for each using the scheme 
of Section 3. 

Problem 1 

This is the well-known shock tube problem of Sod' for the Euler equations in slab symmetry 
S(r) = 1 with y = 1.4 and initial data 

The main features of the exact solution are a shock moving to the right, followed by a 
contact discontinuity also moving to the right, but more slowly, and an expansion fan moving 
to the left. 

Figure 1 shows the approximate and exact solutions for p, u, p and e at t = 0.144 s using 100 
mesh points. It is clear that the approximate solution models the exact solution. 
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Problem 2 

This problem is usually described as 'two interacting blast waves' and is a shock tube problem 
for the Euler equations in slab symmetry with y = 1.4 and initial data 

1,0, 1000, 0 < x < 0.1, { 1,0, 100, 0.9 < x < 1. 
p, U, p = 1,0*01,0*1, 0.1 < x < 0.9, 

The walls of the tube at x = 0 and 1 are assumed to be perfectly reflecting. Two strong blast 
waves develop and collide, producing a complex flow. A detailed description of the time evolution 
of the flow can be found in Reference 10. 
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Figures 2 and 3 show the approximate solution for p and u at t = 001, 0.016, 0.026, 0.028, 
0.03,0*032,0.034 and 0.038 s using 400 mesh points. The results are comparable with those given 
in Reference 10 using a more complicated Riemann solver. 

Problem 3 

This problem is concerned with shock reflection for the Euler equations in slab symmetry 
with y = $ and initial data p, u, p = 1, - 1, 0-017 in the interval 0 < x d 1. This represents gas 
of a constant density and pressure moving towards x = 0 which is a rigid wall. The exact solution 
describes shock reflection from the wall and the reflected shock, of strength 10, propagates 
towards x = 1 with constant speed. 

Figure 4 shows the approximate and exact solutions when the shock has moved a distance 
of 0.3. It is clear that the approximate solution models the exact solution. 

Problem 4 

This problem is concerned with a converging cylindrical shock and we consider a region 
0 < r < 200 for the cylindrically symmetric Euler equations with S(r) = r and y = 1.4. Initially 
a cylindrical diaphragm of radius r = 100 separates two uniform regions of gas at rest. The 
initial conditions are p = 4, p = 4 in the outer region and p = 1, p = 1 in the inner region. 
When the diaphragm is removed at t = 0, a converging shock wave, followed by a con- 
verging contact discontinuity, moves towards the axis, r = 0, and a diverging rarefaction 
wave moves outwards. The shock accelerates as it approaches the axis of symmetry, is 
reflected from the axis and interacts with the contact discontinuity (still converging), which 
results in a transmitted shock, a converging contact discontinuity and a weak converging 
reflected shock. 

Figure 5 shows the approximate solution at times t = 50, 80 and 110 with 200 mesh 
points. The results are comparable with results produced using a more complex 
algorithm. l 1  

Problem 5 

The final test problem is concerned with a converging and a diverging cylindrical shock 
in the region 0 < r < 200 for the cylindrically symmetric Euler equations, again with 
y = 1.4. Initially two cylindrical diaphragms of radii r = 50 and 150 separate three uniform 
regions of gas at rest. The initial conditions are p = 4, p = 4 in the inner and outer regions 
and p = 1, p = 1 in the middle region. When the diaphragms are removed at t = 0, a 
converging shock wave, followed by a converging contact discontinuity, moves towards the 
axis, r = 0, and a diverging shock wave, followed by a diverging contact discontinuity, moves 
away from the axis. The shocks subsequently interact, resulting in a diverging shock wave 
weakening in strength, together with a converging shock wave increasing in strength. Each of 
these shocks then interacts with the corresponding contact discontinuity as in Problem 4, 
resulting in a transmitted shock, a weak reflected shock and a contact discontinuity for each 
interaction. 

Figure 6 shows the approximate solution at times t = 30, 40 and 60 using 200 mesh points. 
We observe the development of the shocks and contact discontinuities, the interaction of shocks 
and the subsequent interaction of each shock with a contact discontinuity, resulting in 
transmitted and reflected shocks and contact discontinuities. 
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Finally, Figures 7-10 show the density results for a two-dimensional, cylindrically symmetric 
shock tube problem solved in two dimensions with a 50 x 50 mesh and in ‘one dimension’ using 
50 and 800 mesh points. Again it is clear that the approximate solutions in one and two 
dimensions are comparable and the convergence to a physically acceptable solution is obtained. 

A comparison of the computational expense has been made using an Amdahl V7 and 
the results are as follows. Using Roe’s ‘square root’ averaging and the ‘Superbee’ limiter6 
with 100 mesh points takes 0.0142 CPU seconds to compute one time step, whereas the 
scheme presented here using arithmetic averages takes 0.0121 CPU seconds to compute one 
time step. 

5. CONCLUSIONS 

We have presented an efficient shock-capturing algorithm for the Euler equations utilizing the 
arithmetic mean for the averages of the flow variables in computational cells. The main features 
of this scheme are that (i) it can be used for slab, cylindrically or spherically symmetric problems 
with confidence and (ii) it can be used as a comparison with results from two-dimensional 
schemes by choosing a large number of mesh points for accuracy and not be expensive on 
computing. 
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